
INFORMS Journal on Computing
Vol. 21, No. 2, Spring 2009, pp. 257–267
issn 1091-9856 !eissn 1526-5528 !09 !2102 !0257

informs ®

doi 10.1287/ijoc.1080.0290
©2009 INFORMS

A Complementarity Constraint Formulation of
Convex Multiobjective Optimization Problems

Sven Leyffer
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439,

leyffer@mcs.anl.gov

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of
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1. Introduction
We consider the solution of nonlinear multiobjec-
tive optimization problems (MOOPs). MOOPs arise
in engineering and economic applications with multi-
ple competing objectives. Applications include the
construction of structures to minimize total mass
and maximize stiffness, design problems with mul-
tiple loading cases, and airplane design to maxi-
mize fuel efficiency and minimize cabin noise; see
the recent monographs (Ehrgott 2005, Hillermeier
2001, Miettinen 1999, Rustem 1998, Stadler 1988,
Steuer 1986).
The multiobjective optimization problem is for-

mally defined as

!MOOP"







minimize
x≥0

f !x"

subject to c!x"≥ 0#

where x ∈!n. We assume that the objective functions
f !x" = !f1!x"# $ $ $ # fp!x""% !n → !p and that the con-
straints c!x" = !c1!x"# $ $ $ # cm!x""% !n → !m are twice
continuously differentiable. We denote the feasible
set by

" %= &x≥ 0% c!x"≥ 0'

and assume that it is nonempty.
We present a new approach to nonlinear multiob-

jective optimization that captures the geometry of the
Pareto set by generating a discrete set of Pareto points
that maximizes the uniformity of the representation
of the Pareto set. We show that the problem of finding

an optimal discrete representation of the Pareto set
can be formulated as a bilevel optimization problem.
If MOOP is convex, then we show how to solve the
bilevel problem as a mathematical program with com-
plementarity constraints (MPCCs) by taking advan-
tage of recent progress on the solution of MPCCs.
This paper is organized as follows. In the remainder

of this section we briefly review optimality conditions
for MOOPs, discuss existing solution methods, and
motivate our approach with a small example. In §2
we formally introduce our new approach and derive
some theoretical properties of our formulation. In §3
we describe a random MOOP generator and a col-
lection of test problems from the literature, and we
present our numerical results. In §4 we briefly exam-
ine open questions and suggest some future lines of
research.

1.1. Introduction to Multiobjective Optimization
We start by reviewing some basic concepts of MOOPs
that will be used throughout the paper. Let x∗

k denote
a solution to the single-objective nonlinear program
(NLP) given by







minimize
x≥0

fk!x"

subject to c!x"≥ 0#
(1)

and define the payoff matrix Z ∈ !p×p as Zij %= fi!x
∗
j ",

which provides useful information on the trade-offs
between the multiple objectives. Note that the minima
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of each single-objective NLP (1) are the diagonal of
entries of Z, also referred to as ideal values. We define

z∗ %= !f1!x
∗
1"# $ $ $ # fp!x

∗
p"" and

z̄∗ %=
(

max
i '=1

f1!x
∗
i "# $ $ $ #max

i '=p
fp!x

∗
i "
)

#
(2)

and note that the ideal values z∗ and the maxi-
mum values z̄∗ approximate the range of the objective
values.
Optimality conditions for MOOPs are given by

Miettinen and Mäkelä (1998a), based on normal cones
and Clarke’s generalized gradients (Clarke 1983).
Definition 1.1 (Miettinen and Mäkelä 1998b).

Let x∗ ∈ " be a feasible point with the corresponding
criterion vector z∗ = f !x∗".
1. !x∗# z∗" is globally Pareto-optimal if there exists no

x ∈ " , x '= x∗, with fk!x" ≤ fk!x
∗" for all k = 1# $ $ $ # p,

and fr !x" < fr!x
∗" for at least one index 1≤ r ≤ p.

2. !x∗# z∗" is locally Pareto-optimal if there exists a
( > 0 such that x∗ ∈ " is globally Pareto-optimal in
" ∩ B!x∗#(", where B!x∗#(" is a ball of radius (
around x∗.
3. We designate the set of all Pareto points as # %=

&z∗% !x∗# z∗" is a Pareto point'.
4. MOOP is said to be convex if the functions f !x"

are convex and the constraint functions c!x" are con-
cave (i.e., the feasible set is convex).
The following result gives a necessary condition for

local Pareto optimality.

Theorem 1.2 (Miettinen and Mäkelä 1998b). Let
x∗ ∈ " be a feasible point at which Cottle’s constraint
qualification holds. A necessary condition for z∗ = f !x∗"
to be locally Pareto-optimal is that there exist multipliers
w≥ 0#w '= 0, and y ≥ 0 such that

0=
p
∑

k=1

wk)fk!x
∗"−

m
∑

j=1

yj)cj!x
∗"# (3)

and yjcj !x
∗"= 0 for all j = 1# $ $ $ #m. If MOOP is convex,

then this condition is also sufficient.

1.2. Solution Methods for MOOPs
Here, we briefly review two techniques for find-
ing a single Pareto point. Other techniques can be
found in recent monographs by Ehrgott (2005) and
Miettinen (1999). Both techniques form the basis of
our approach to finding multiple Pareto points. The
first technique forms a convex combination of the
objective functions and solves the following NLP:

!SUM!w""











minimize
x≥0

p
∑

k=1

wkfk!x"

subject to c!x"≥ 0#

where the weights wk ≥ 0, k= 1# $ $ $ # p, with
∑

wk = 1.
By varying the weights we can identify different

Pareto points. We are grateful to an anonymous ref-
eree for pointing out that SUM(w) may generate
weakly dominated solutions. Only if the MOOP is
convex can SUM(w) generate all Pareto points by
varying w.
The second technique is related to goal program-

ming and classification techniques. It minimizes one
objective subject to achieving a given goal on all other
objectives. Without loss of generality, we let f1!x" be
the objective that is minimized, and we denote the
goals by z ∈!p−1 and solve the following NLP:

!GOAL!z""















minimize
x≥0

f1!x"

subject to fk!x"≤ zk# k= 2# $ $ $ # p#

c!x"≥ 0$

Clearly, the goals should be chosen to lie between z∗

and z̄∗, although not all choices of z give rise to a fea-
sible problem GOAL!z". We show in the next section
that GOAL!z" gives rise to Pareto points. In contrast
to SUM(w), however, all feasible choices of target z
generate a Pareto point, and all Pareto points can be
found by varying z.

1.3. Motivation of New Approach
One way in which we can obtain a discrete descrip-
tion of the Pareto set, #, is to solve SUM!w" or
GOAL!z" repeatedly for different weights or goals.
However, choosing the weights and goals is not
straightforward. For example, Das and Dennis (1998)
have observed that a uniform distribution of weights
does not provide a uniform description of the Pareto
set. Figure 1 shows two discrete descriptions of
the Pareto set of three objective functions. The first
description (circles) was generated from a uniform
distribution of the goals, while the second description
(boxes) was generated by maximizing the uniformity
of the representation. The figure shows two view-
points of the same three-dimensional (3-D) Pareto set
and shows that the optimized description provides a
better description of the Pareto set.
We close this section by summarizing our main

assumptions.

Assumptions 1.3. Throughout, we make the following
assumptions:
A1. The problem functions f !x" and c!x" are twice con-

tinuously differentiable.
A2. The feasible set " %= &x ! x ≥ 0 and c!x" ≥ 0' is

not empty and bounded.
A3. Any local solution to SUM!w" and GOAL!z" sat-

isfies the Mangasarian-Fromowitz constraint qualification
and a second-order sufficient condition.
A4. The functions f !x" and c!x" are convex.
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Figure 1 Two Perspectives of the Same Representations of a
Pareto Set

Note. The circles show a uniform Pareto set, and the boxes show the maxi-
mally uniform Pareto set.

Assumptions A1 to A3 are relatively weak and sim-
ply ensure that any single-objective NLP is tractable
and can be solved by using standard NLP techniques.
We could replace the boundedness assumption A2 by
an assumption on the boundedness of level sets of an
exact penalty function. The most restrictive assump-
tion is Assumption A4. The main reason for this
assumption is that we replace the NLPs SUM!w" and
GOAL!z" by their respective first-order conditions,
which are necessary and sufficient, if the NLPs are
convex. We note that convexity does not imply the
second-order sufficient condition.

2. Optimal Representation of
the Pareto Surface

In this section we present a new approach to finding
a discrete representation of the Pareto set, #, that is
optimal in a certain sense. We start by reviewing three
quality measures of a discrete representation of the
Pareto set proposed by Sayin (2000) and show that
they lead to a bilevel problem whose solution corre-
sponds to an optimal representation of the Pareto set.

We also derive a complementarity constraint formu-
lation by replacing the lower-level problems by their
first-order conditions.

2.1. Bilevel Formulation of MOOPs
Sayin (2000) introduces three quality measures of a
discrete representation of the Pareto set: cardinality,
coverage error, and uniformity of the representation.
We assume here that the cardinality is user defined
and is fixed. The coverage error for a discrete repre-
sentation $⊂# of the Pareto set, #, is defined as

*=max
v∈#

min
u∈$

,u− v,#

where ,·, is any norm in !p. Unfortunately, to
compute this measure, we require explicit knowl-
edge of the Pareto set, #. We therefore believe that
coverage error is not a practical measure of qual-
ity. However, the final quality measure introduced
by Sayin (2000)—namely, the uniformity of the re-
presentation—can be used to derive optimally uni-
form approximations of the Pareto set. Uniformity of
representation is defined as the largest + such that

+≤ min
u#v∈$#u'=v

,u− v,$ (4)

Next, we show that the problem of finding a max-
imal uniform representation of the Pareto set, #, can
be formulated as a bilevel programming problem.
We consider any single-objective approach such as
SUM!w" or GOAL!z" and consider the parameters w
or z as variables that are optimally determined within
a bilevel optimization problem. The key idea is to
simultaneously determine q ≥ 2 Pareto points xl, for
l = 1# $ $ $ # q, and their corresponding parameters wl

(or zl) such that the Pareto points maximize the uni-
formity of the presentation of the Pareto set. The
upper level controls the parameters wl (or zl), while
the lower level corresponds to q single-objective NLPs
given by SUM!wl" or GOAL!zl".
Figure 2 provides a graphical illustration of our

approach. There are two objective functions, and the
solid line shows the Pareto set. We are seeking a given
number of discrete points such that the pairwise dis-
tances between the Pareto points is maximized, illus-
trated by the circles around each Pareto point. Here,
we maximize + subject to the constraints + ≤ +lk,
where +lk = ,f !xl" − f !xk", and xl are Pareto points
characterized by solving SUM!w" or GOAL!z".
Formally, we consider the problem of finding a

given number q ≥ 2 of Pareto points that maximize
the uniformity of the discrete representation of the
Pareto set. We start by deriving a problem to find
an optimal representation of the Pareto set based on
the convex combination problem SUM!w". Let w %=
!w1# $ $ $ #wq"

T denote the weights to be determined,
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Figure 2 Maximizing Distances Between Pareto Points

and let x %= !x1# $ $ $ # xq"
T denote the corresponding

Pareto points (one copy for each Pareto point). The
problem of maximizing the uniformity of the discrete
representation of the Pareto set can then be for-
mulated as the following bilevel optimization prob-
lem (in the remainder we choose the ,2 norm for
simplicity):







































maximize
x#w#+

+

subject to +≤ ,f !xl"− f !xk",22
∀1≤ k# l≤ q# k '= l#

wk ≥ 0# and eT wk = 1# ∀k= 1# $ $ $ # q#

xk solves SUM!wk"$

(5)

The aim in (5) is to find q ≥ 2 Pareto points such that
the smallest distance between any two function val-
ues fk is pushed as far apart as possible while remain-
ing within the Pareto set. As is customary in bilevel
optimization, we refer to w and + as the control, or
upper-level, variables and to x as the state, or lower-
level, variables. We note that even though MOOP is
convex, the bilevel problem is in general nonconvex,
and the task of finding a global solution is daunting.
However, we present numerical evidence in §3 that
even local solutions of (5) provide improved repre-
sentations of the Pareto set.
One disadvantage of (5) is the lack of general-

purpose solvers for bilevel optimization problems. To
develop a practical technique for solving (5), we there-
fore replace the constraint “xk solves SUM!wk"” by its
first-order conditions and exploit recent advances in
the development of robust solvers for mathematical
programs with complementarity constraints.
Under Assumptions A1–A4, it follows that the first-

order conditions for SUM!wk" are necessary and suffi-
cient. We can therefore equivalently replace (5) by the

following mathematical program with complementar-
ity constraints (MPCC):


































































maximize
x#y#w≥0#+

+

subject to +≤ ,f !xk"− f !xl",22
∀0≤ k# l≤ q# k '= l#

eT wl = 1 ∀ l= 1# $ $ $ # q#

0≤ xl ⊥ )!wT
l f !xl""−)c!xl"yl ≥ 0

∀ l= 1# $ $ $ # q#

0≤ yl ⊥ c!xl"≥ 0 ∀ l= 1# $ $ $ # q#

(6)

where the last two sets of constraints are complemen-
tarity constraints. The notation 0 ≤ u ⊥ v ≥ 0 means
that the two vectors u#v ≥ 0 and that, in addition,
uT v ≤ 0; that is, a component i of ui = 0 or the cor-
responding component of vi = 0. We note that the
dimension of (6) is roughly q times the dimension of
SUM!wl" (plus q × p weights), as every Pareto point
requires a new copy of the primal and dual vari-
ables x and y. We can remove one component of each
wl and the constraints eT wl = 1 if we replace the first-
order condition by

0≤ xl ⊥ )!!1# /wl"
T f !xl""−)c!xl"yl ≥ 0

∀ l= 1# $ $ $ # q# (7)

where /wl ∈ !p−1 are the weights on the remaining
objectives. This formulation has the advantage that it
removes one bilinearity from the first-order condition.
We note, however, that (6) and (7) are not equivalent,
because the latter overemphasizes the first objective.
An alternative MPCC is obtained by using the first-

order conditions of GOAL!z". In this case, we are
looking for goals z = !z1# $ $ $ # zq" and corresponding
multipliers u= !u1# $ $ $ #uq" that solve


































































maximize
x#y#z#u#+

+

subject to +≤,f !xk"−f !xl",22
∀0≤k# l≤q #k '= l#

0≤xl⊥)!!1#ul"
T f !xl""−)c!xl"yl≥0

∀ l=1#$$$#q#

0≤yl⊥c!xl"≥0 ∀ l=1#$$$#q#

0≤ul⊥zl− f̂ !xl"≥0#

(8)

where f̂ !xl"= !f2!xl"# $ $ $ # fp!xl"". We note that even if
the MOOP is linear, the MPCCs (6) and (8) are non-
convex optimization problems because of the pres-
ence of the complementarity constraints and the
upper bound on +≤ ,f !xk"−f !xl",22. Thus, in practice
we can at best hope to find a local solution.
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Numerical experience has shown that it can be ad-
vantageous to work with a componentwise definition
of +. Thus, the goal programming version becomes











































































maximize
x#y#z#u#+

p
∑

i=1

+i

subject to +i≤ !fi!xk"−fi!xl""
2

∀0≤k# l≤q# k '= l and ∀ i=1#$$$#p#

0≤xl⊥)!!1#ul"
T f !xl""−)c!xl"yl≥0

∀ l=1#$$$#q#

0≤yl⊥c!xl"≥0 ∀ l=1#$$$#q#

0≤ul⊥ f̂ !xl"≤zl$

(9)

Similarly we can define componentwise versions
with the first-order conditions of SUM!wk". This
new MPCC approach can be generalized easily
by using other single-objective characterizations of
Pareto points. Many algorithmic choices and variants
are possible and can be used to tackle multiobjective
optimization problems within the framework of equi-
librium constraints.

2.2. Theoretical Foundation of New Approach
We start by recalling that under Assumptions A1–A4,
the first-order conditions of SUM!w" and GOAL!z"
characterize a Pareto point. This result is a direct
corollary of Theorem 1.2.

Corollary 2.1. Let Assumptions A1–A4 hold. Then
it follows that !x∗#y∗" is a Pareto point if

1. !x∗#y∗" solves the first-order conditions of SUM!w"
for some weights w≥ 0 with eT w= 1, or
2. !x∗#y∗#u∗" solves the first-order conditions of

GOAL!z" for some goals z.

Clearly, the solution of the bilevel program (5) gives
rise to a set of Pareto points.

Proposition 2.2. Let Assumptions A1–A4 hold. Then
it follows that if
1. !x∗

k# y
∗
k#w

∗
k#+

∗" solves problem (6), then !x∗
k# f

∗
k " are

Pareto points of MOOP;
2. !x∗

k# y
∗
k#u

∗
k# z

∗
k#+

∗" solves problem (8), then !x∗
k# f

∗
k "

are Pareto points of MOOP.
Moreover, in each case, if +∗ is the global maximizer, then

+∗ maximizes the uniformity of the discrete representation
of the Pareto set.

What makes this new approach practical is the
fact that the MPCCs can be solved reliably and effi-
ciently as nonlinear programs (NLPs) (Anitescu 2005,

Fletcher et al. 2006). For example, a suitable NLP for-
mulation of the MPCC (6) is given by


































































maximize
x#y#w#s#t≥0#+

+

subject to +≤,f !xk"−f !xl",22 ∀0≤k#l≤q#k '= l#

eT wl=1 ∀ l=1#$$$#q#

sl=)!wT
l f !xl""−)c!xl"yl ∀ l=1#$$$#q#

xl≥0# sl≥0# xT
l sl≤0 ∀ l=1#$$$#q#

tl=c!xl" ∀ l=1#$$$#q#

yl≥0# tl≥0# yT
l tl≤0 ∀ l=1#$$$#q#

(10)
where we have introduced slacks to obtain a numer-
ically favorable formulation. It is well known that
(10) violates the Mangasarian-Fromowitz constraint
qualification at any feasible point (Chen and Florian
1995) because of the presence of the bilinear terms
xT
l sl ≤ 0 and yT

l tl ≤ 0. Recently, however, Fletcher et al.
(2006) have shown that any stationary point of the
NLP (10) is a strongly stationary point (Scheel and
Scholtes 2000) of the MPCC (6) and vice versa. This
fact has been used to show that standard NLP solvers
can tackle MPCCs reliably and efficiently provided an
MPCC-LICQ holds (Anitescu 2005, Benson et al. 2006,
Fletcher et al. 2006, Fletcher and Leyffer 2004, Leyffer
2003, Leyffer et al. 2006, Liu et al. 2006, Raghunathan
and Biegler 2005). We note that similar results hold for
other nonlinear formulations of the complementarity
conditions (Leyffer 2006).
Next, we analyze the complementarity constraints

further. We prove that if the single-objective NLP sat-
isfies the linear-independence constraint qualification
and a second-order sufficient condition, then the con-
straint normals of the first-order conditions are lin-
early independent. We state this result in a slightly
more general form.

Proposition 2.3. Consider the general single-objective
nonlinear program

minimize
x

F !x" subject to G!x"≥ 0# (11)

where F % !n → ! and G% !n → !m are twice continu-
ously differentiable. Let x∗ be a solution that satisfies the
linear-independence constraint qualification and a second-
order sufficient condition. Then it follows that the active
constraint normals of the mixed complementarity problem
corresponding to the first-order conditions of (11),

)F !x"+)G!x"T y = 0#

0≤ y ⊥G!x"≥ 0#
(12)

are linearly independent.
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Proof. Let !x∗#y∗" be the optimal primal-dual solu-
tion of (11). The active constraints are defined as

%∗ %= &i% Gi!x
∗"= 0'$

We introduce the following notation,

A∗ %= -)G∗
i .i∈%∗# W∗ %= ) 2F ∗ +

m
∑

i=1

y∗
i )

2G∗
i # and

I∗ %= -ei.i '∈%∗#

to denote the various parts of the active constraint
normals. To prove the result, we need to show that
the basis matrix

B∗ %=









W∗ A∗

AT
∗ 0

0 I∗









has linearly independent columns.
The proof is by contradiction, and we assume that

there exists s = !sx# sy" '= 0 such that B∗s = 0. The last
two equations imply that sy = 0 and that AT

∗ sx = 0, and
we are left with W∗sx = 0. Premultiplying by sx gives
sTx W∗sx = 0, which contradicts the second-order suffi-
cient condition, namely, that sTx W∗sx > 0 for all sx '= 0
such that AT

∗ sx = 0. Thus, the columns of B∗ are lin-
early independent. !

Proposition 2.3 ensures that the complementarity
constraints of (6) and (8) satisfy an MPCC-LICQ
condition (Scheel and Scholtes 2000) whenever the
underlying single-objective NLP satisfies an LICQ
and a second-order sufficient condition. However, this
result does not prove that the MPCC (6) or (8) satisfies
an MPCC-LICQ, because degeneracy may exists in the
constraints that define the maximum uniformity, +.
One limitation of our approach is the fact that even

linear MOOPs such as














maximize
x

CT x

subject to AT x≥ b#

x≥ 0#

lead to nonconvex NLP formulations. The reason for
the nonconvexity of (6) is the presence of the con-
straints + ≤ ,CT xk − CT xl,22 and the presence of the
complementarity constraints. Thus, in general, we
cannot expect to find the global minimum of (6).
However, numerical experience presented in the next
section shows that our approach is promising.
Another limitation of our approach is the require-

ment that the MOOP be convex (Assumption A4).
Consider the MOOP

minimize
x

-!x2 − 1"2# !x2 − 4"2.$ (13)

It follows that f1!x" = !x2 − 1"2 has two minimiz-
ers at x = ±1 and a maximum at x = 0. Likewise,
f2!x" = !x2 − 4"2 has two minimizers at x = ±2 and
a maximum at x = 0. However, the MPCC (6) can-
not distinguish between minima and maxima. For
this example, the MPCC approach generates the two
“Pareto” points x1 = 1 and x2 = 0, which maximize
the uniformity of representation. However, the second
Pareto point, x2 = 0, clearly corresponds to a maxi-
mizer of the lower-level problem. Thus, for noncon-
vex MOOPs, the MPCC approach has a bias toward
generating both minima and maxima of the MOOP,
because such a choice of controls maximizes the sep-
aration between the objective values. Note that we
could still use the bilevel formulation (5), but that
would rule out the use of standard NLP solvers.

3. Numerical Experience
This section presents our numerical results. To test our
approach, we have collected test problems from the lit-
erature and generated random quadratic MOOPs. All
test problems and the random generator are available
at http://www.mcs.anl.gov/∼leyffer/MOOP/.

3.1. Obtaining Good Starting Points
Early numerical experience showed that the NLP
solvers may fail to find a feasible point to the MPCC
formulations (6) or (8). The failures were caused by
the nonconvexity of the MPCC formulation, which
can cause the NLP solvers to converge to a local min-
imum of the constraint violation.
Hence we have adopted the following strategy

for finding initial feasible points. We first fix the
weights, or goals, and solve the resulting NCP using
PATH (Dirkse and Ferris 1995, Ferris and Munson
2000). This is a standard strategy for solving complex
MPCCs and is readily implemented in AMPL (Fourer
et al. 2003) by using the named model facility.
Another difficulty that arose for some problems is

that different weights can give rise to the same Pareto
point. Unfortunately, this corresponds to a stationary
point of the MPCC (6) and (8) with +∗ = 0. Thus we
ran the NCP solver for different choices of weights
until we found a set of Pareto points with + '= 0. This
initial NCP solution also provides an initial guess at
the maximum uniformity. The results for the start-up
with PATH and their computational cost are included
in Table 3.

3.2. Description of Test Problems and Solvers
Table 1 shows the name of the test problem, the num-
ber of variables n, the number of constraints m, the
number of objectives p, the type of objectives and con-
straints, and whether or not the problem is convex (C)
in the final column. We note that our collection con-
tains the nonconvex problems ABC-comp, ex002, and
ex004.
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Table 1 Multiobjective Optimization Problem Characteristics

Name n m p Source Objective Constraints C

ABC-comp 2 3 2 Hwang and Masud (1979) Quadratic Bilinear N
ex001 5 3 2 Das and Dennis (1997) Quadratic Quadratic Y
ex002 5 2 2 Wang and Renaud (1999) Quadratic Nonlinear N
ex003 2 2 2 Tappeta and Renaud (1999) Quadratic Nonlinear Y
ex004 2 3 2 Oliveira and Ferreira (2000) Nonlinear Linear N
ex005 2 0 2 Hwang and Masud (1979) Nonlinear Bounds Y
hs05x 5 3 3 Hock and Schittkowski (1981) Quadratic Linear Y
liswetm 7 5 2 Li and Swetits (1993) Quadratic Linear Y
MOLPg-1 8 8 3 Steuer (1986) Linear Linear Y
MOLPg-2 12 16 3 Steuer (1986) Linear Linear Y
MOLPg-3 10 14 3 Steuer (1986) Linear Linear Y
MOQP[01-03] 20 10 3 Quadratic Linear Y

Problems hs05x and liswetm are constructed from
several academic NLP test problems that have the
same constraints and different objective functions. We
have also written a random MOOP generator that
generates multiobjective quadratic programs with lin-
ear constraints. The generator is written in matlab and
generates large sparse problems that are output in
AMPL format. The Hessian matrix is forced to be posi-
tive definite by adding a suitably large multiple of the
identity to the diagonal. This ensures that the result-
ing MOOPs are convex.
Table 2 shows the size of the NCP and the various

MPCC formulations for q = 10 Pareto points. Here, n,
m, and r refer to the number of variables, the num-
ber of constraints, and the number of complementar-
ity conditions, respectively. As expected, the growth
in terms of the number of variables compared with
the NCP formulation is modest, while the increase in
the number of constraints corresponds to the addi-
tion of the constraints + ≤ · · · , which is of order q2.
We also note that formulation (8) gives rise to the
largest MPCCs because we have added multipliers of
the goal constraints.
We note that the problem sizes differ for the NCP

and MPCC formulations. The reason is that the NCP

Table 2 Characteristics of NCP and MPCC Formulations

NCP (6) (7) (8)

Name n m r n m r n m r n m r

ABC-comp 51 51 50 71 105 50 61 95 50 71 150 60
ex001 80 80 10 101 135 10 91 125 10 101 180 20
ex002 70 70 50 91 134 50 81 115 50 91 170 60
ex003 40 40 40 61 104 40 51 94 40 61 140 50
ex004 40 40 40 61 104 40 51 94 40 51 130 40
ex005 20 20 20 41 84 20 31 74 20 41 120 30
hs05x 80 80 50 111 135 50 101 170 50 121 190 70
liswetm 121 121 50 141 184 50 131 174 50 141 220 60
MOLPg-1 160 160 160 191 260 160 181 250 160 201 290 160
MOLPg-2 291 291 280 321 390 280 311 380 280 331 420 280
MOLPg-3 261 261 240 291 360 240 281 350 240 301 390 240
MOQP[01-03] 311 311 300 341 410 300 331 400 300 351 420 320

fixes the upper-level variables, wl, to obtain a feasible
solution. The differences between the MPCC formula-
tions are due to the fact that in (7) we have fixed one
weight from (6) to one. Moreover, (8) contains vari-
ables corresponding to the objective multipliers ul, in
addition to the goals zl.
The problems are formulated in AMPL, and the

initial NCPs are solved by using PATH. PATH imple-
ments a generalized Newton method that solves a lin-
ear complementarity problem to compute the search
direction. The MPCCs are solved by using filterSQP
(Fletcher and Leyffer 2002, 2004), which automatically
reformulates the complementarity constraints as non-
linear equations. This solver implements a sequential
quadratic programming algorithm with a filter to pro-
mote global convergence (Fletcher et al. 2002).

3.3. Detailed Numerical Results
Table 3 summarizes our numerical experience. The
table shows the number of major (Newton) iterations
and the final value of +, which can be taken as an
indication of the quality of the computed represen-
tation of the Pareto set. We provide results only for
the NCP version of SUM!w"; results for the other for-
mulations are similar, and we merely mention the
NCP run to illustrate the start-up cost (the PATH
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Table 3 Numerical Results for NCP and MPCC Formulations

NCP/PATH (6) (7) (8)

Name Iteration !∗ Iteration !∗ Iteration !∗ Iteration !∗

ABC-comp 5 1"154 44 28"43 11 28"43 36 [I]
ex001 4 1.210E−2 28 1"648 14 1"648 4 1"648
ex002 22 4.723E−7 21 3.245E−6 78 2.107 [L] 45 3.206 [L]
ex003 23 1.944E−6 22 2.912E−4 11 4.478E−1 1 8.449 E−2
ex004 6 3.577E−2 14 6.441E−1 49 6.441E−1 13 8.150E−1 [L]
ex005 2 8.702E−5 405 1.656E−2 1#000 1.540E−2 9 1.496E−1
hs05x 1 1.615E−1 237 323"2 374 323"3 193 316"5
listwetm 0 1.847E−2 48 2.830E−1 217 2.830E−1 62 2.210E−4
MOLPg-1 7 0 1 0 1 0 10 52"11
MOLPg-2 5 0 4 0 6 0 18 3"623
MOLPg-3 7 0 5 0 7 0 24 15"74
MOQP-01 6 243"3 296 5,466 897 5,622 452 3,117
MOQP-02 $S% 262 4,046 1#000 [I] 707 5,235
MOQP-03 9 69"66 1#000 [I] 1#000 [I] 488 1,160

solve) and the improvement in uniformity that can
be achieved. The iteration limit for all solvers is 1,000
major iterations.
Failures of the solvers are indicated by the follow-

ing: [S] indicates termination with segmentation fault;
[I] means that the solver failed to find a feasible point.
Unfortunately, this latter outcome is difficult to avoid
because the MPCC are nonconvex. Some of these fail-
ures may be due to the relative immaturity of the
computational tools for solving MPCCs. In our expe-
rience, warm-starting the MPCCs from a solution of
the initial NCP greatly improves the likelihood of
finding a feasible MPCC solution. Runs for which the
solver failed to converge within the limit of 1,000 iter-
ations are identified by 1,000 in the Iteration column.
We note that for only two problems does the solver
fail in this way, namely, ex005 and MOQP-3.
The results for the nonconvex MOOPs are interest-

ing. As indicated earlier (see (13)), nonconvex MOOPs
can have the undesirable effect of increasing + by
placing points xk at local maxima. This corresponds
to a failure of the formulation, because the first-order
condition cannot capture the difference between min-
ima and maxima. We indicate this failure by [L]. It
occurs on the two nonconvex examples (ex002 and
ex004) and corresponds to a failure of the Karush-
Kuhn-Tucker (KKT) conditions to characterize local
minima. Despite this shortcoming, we are able to find
valid approximations of the Pareto set for the noncon-
vex example ABC-comp.
We also observe that the approach can generate

weakly dominated Pareto points. Figure 3 shows the
computed Pareto set for ex004. On the left is the
Pareto set for the uniform weights; on the right is
the Pareto set with optimal weights, which clearly
provides greater uniformity. We note, however, that
the MPCC approach identifies one weakly dominated
Pareto point, namely, the point !2#6", in the right plot,
which is clearly dominated by the lower point.

The results of MOLPg-∗ for NCP, (6), and (7) are
also of interest. In these cases, the optimal uniformity
is +∗ = 0, which corresponds to two or more coa-
lescing Pareto points. Typically, however, the MPCC
approaches are able to improve the uniformity by
orders of magnitude compared with the uniform
representation corresponding to NCP. In our experi-
ments, (7) obtained better uniformity than (6) on two
examples: ex003 and MOQP-01. We believe that there
may be numerical reasons that make (7) preferable on
some examples.
The results in Table 3 show that the MPCC formula-

tion based on goal programming, (8), is clearly supe-
rior to the other two formulations: the formulation
based on goal programming is the only formulation
that achieves positive separation between all Pareto
points for the MOLPg problems. The better perfor-
mance of the goal-programming-based approach (8)
is not surprising, given its superior theoretical prop-
erties. We also note that in our experiments we arbi-
trarily fixed the first objective as the main objective
in GOAL(z). The approach may be even more robust
if we allow ourselves to cycle through the objectives
in turn.
We are interested in discovering how close the

MPCC approach gets to the global maximum. Unfor-
tunately, it would be prohibitive to run global opti-
mization software on these test problems. Thus, we
have conducted a small experiment by running the
global optimization solver Baron (Tawarmalani and
Sahinidis 2002, Sahinidis 2000) on the smallest MOOP,
namely, the GOAL(z) formulation of ex005 for a
reduced number of Pareto points (q = 8). Baron is a
branch-and-reduce solver that generates valid bounds
by constructing (local) outer approximations of the
nonconvex functions that are refined in a branch-and-
bound tree search. Even though Baron did not find
the global maximum in 36,000 seconds CPU time, the
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Figure 3 NCP (Left) and MPCC (Right) Pareto Sets for ex004
Note. The latter has one spurious point.

results are still of interest. In particular, Baron gives
the following valid bounds on the maximum: 0$3032≤
+∗ ≤ 0$7055. Table 4 gives the details of the runs,
where we have added the results of the uniform dis-
tribution for comparison.
The approximate Pareto set for q = 8 is shown in

Figure 4. The left plot shows the Pareto set of the NCP
approach, which does not attempt to maximize uni-
formity. The plot on the right compares the Pareto sets
obtained with the MPCC approach (crosses) and the
global optimization solver Baron (circles). Surprisingly,
the local MPCC solver finds a better solution than the
global optimization approach. Of course, it is not clear
whether even this solution is a global maximum, but
the bounds obtained from Baron are encouraging. We
note also that Baron finds its lower bound (candidate
solution) after 2.54 seconds and spends the remainder
of the time searching the tree for a better solution.

4. Conclusions and Outlook
We have presented a new approach to solving multi-
objective optimization problems that approximates a
maximally uniform representation of the Pareto set.
We show how this problem can be formulated as
a mathematical program with complementarity con-
straints, and we present three formulations based on
convex sum and goal-programming single-objective
formulations of MOOP. Preliminary numerical results
are encouraging, especially for the approach based on
goal programming.

Table 4 Comparison of Solution for ex005 from NCP, MPCC, and Baron

NCP MPCC Baron

CPU time (s) 0.0 0.04 36,000
Iterations 14 33 80,488
Uniformity !∗ 4.91E−4 0.3580 0.3032

Our new MPCC approach can be generalized eas-
ily by using other single-objective characterizations of
Pareto points. Many algorithmic choices and variants
are possible and can be used to tackle multiobjec-
tive optimization problems within the framework of
equilibrium constraints. More numerical experience is
needed to decide which of these schemes works best
under which circumstances.
Important open questions do remain, however. For

example, the reformulation requires the user to form
the first-order conditions of a single-objective formu-
lation of MOOP, a process that (from our experience)
is prone to error. In addition, the first-order condi-
tions are necessary and sufficient only if the MOOP
is convex. We have observed examples where a lack
of convexity results in spurious Pareto points being
found by our approach.
Some of these limitations can be overcome by better

MPCC solvers that preserve local minima. However,
such an approach would make it harder to exploit
the available NLP solver technology. The requirement
that the user form first-order conditions can be over-
come by developing extensions to AMPL that allow
bilevel optimization models. This is a nontrivial task,
however, because AMPL would then have to provide
derivatives up to third order for the Hessian matrices
used in the NLP solvers.
Another limitation of our approach is the &!q2"

number of constraints that define the uniformity +
in (6) and (8). This limits the applicability of our
approach to a mere 10 Pareto points. If more Pareto
points were needed, then we could apply ideas simi-
lar to domain decomposition to partition the objective
space, and then apply our approach to each partition.
Ultimately, we believe that our technique can be

incorporated into interactive MOOP solution ap-
proaches such as www-nimbus (Miettinen and Mäkelä
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Figure 4 NCP (Left) and Baron and MPCC (Right) Pareto Sets for ex005

2000). The advantage of our approach is that it pro-
vides a broader picture of the Pareto set. By allowing
the user to interact with this representation, we believe
that our approach can be made more robust and less
susceptible to problems caused by nonconvexities.
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